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Goal

(I) In the next 3 or 4 lectures we will come back to earth and
study more carefully the group G = SL2(R), the
automorphic forms on it and the spectral decomposition of
L2(Γ\G ), where Γ is a lattice in G , as well as the link with
representation theory.

(II) The main reference will be Borel’s book ”Automorphic forms
on SL2”, to be called the Bible from now on. For discrete
subgroups of G an excellent reference is Katok’s book
”Fuchsian groups”. We will take for granted the geometric
properties of lattices in G , which are not easy to establish in
complete generality, but which are elementary for co-compact
lattices and finite index subgroups of SL2(Z), which are the
main interesting examples for the automorphic theory.



Goal

(I) In the next 3 or 4 lectures we will come back to earth and
study more carefully the group G = SL2(R), the
automorphic forms on it and the spectral decomposition of
L2(Γ\G ), where Γ is a lattice in G , as well as the link with
representation theory.

(II) The main reference will be Borel’s book ”Automorphic forms
on SL2”, to be called the Bible from now on. For discrete
subgroups of G an excellent reference is Katok’s book
”Fuchsian groups”. We will take for granted the geometric
properties of lattices in G , which are not easy to establish in
complete generality, but which are elementary for co-compact
lattices and finite index subgroups of SL2(Z), which are the
main interesting examples for the automorphic theory.



Goal

(I) Here are some sources of lattices in G :

• arithmetic origin: finite index subgroups of SL2(Z) are
lattices in G , not co-compact. Also quaternion division
algebras over Q, split over R, give rise naturally to
co-compact lattices in G (we will see this in a later lecture).

• geometric origin: if X is a compact hyperbolic surface of
genus ≥ 2, by the uniformization theorem there is a
co-compact lattice Γ ⊂ G such that X ' Γ\H , where H is
the upper half-plane.



Structure of G

(I) There are three crucial subgroups in G :

A = {
(
a 0
0 a−1

)
| a > 0}, N =

(
1 R
0 1

)
and the standard maximal compact subgroup K = SO(2).

(II) The product map N × A× K → G is a diffeomorphism
(Iwasawa decomposition), in particular H ' G/K is
diffeomorphic to N × A. Concretely

z = x + iy ∈H 7→ (

(
1 x
0 1

)
,

(
y1/2 0

0 y−1/2

)
) ∈ N × A.
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Structure of G

(I) We will have to study a lot the growth of functions on G ,

and for this we will use the norm (for g =

(
a b
c d

)
∈ G )

||g || =
√

tr(gg t) =
√
a2 + b2 + c2 + d2.

Note that ||g || ≥ 1, ||gh|| ≤ ||g ||•||h|| and ||k1gk2|| = ||g || if
ki ∈ K .

(II) A function f : G → C is said to have moderate growth (or
simply MG) if there are constants c ,N such that
|f (g)| ≤ c ||g ||N for all g ∈ G .
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Calculus on G

(I) The Lie algebra g of G is the space of 2× 2 real matrices
with trace 0. The standard basis of g is given by

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

Note that e − f =

(
0 1
−1 0

)
spans the Lie algebra of K .

(II) g acts by left-invariant differential operators on C∞(G ), via

X .f (g) = lim
t→0

f (getX )− f (g)

t
.

(III) The sub-algebra of EndC(C∞(G )) generated by these
differential operators (when X runs through g) is denoted
U(g) and called the enveloping algebra.
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Calculus on G
(I) In U(g) we have the relations

ef − fe = h, he − eh = 2e, hf − fh = −2f

and (enf mhk)n,m,k≥0 form a C-basis of U(g)
(Poincaré-Birkhoff-Witt theorem).

(II) The center of U(g) is C[C ] where the Casimir operator is

C =
1

2
h2 + ef + fe.

(III) The following easy result is very useful:

D.(f ∗α) = f ∗ (D.α), ∀f ∈ C∞(G ), α ∈ C∞c (G ), D ∈ U(g).

Indeed, this reduces to the case D ∈ g, and then

D(f ∗ α)(x) =
d

dt
|t=0

∫
G
f (xetDy−1)α(y)dy

=
d

dt
|t=0

∫
G
f (xz−1)α(zetD)dz = f ∗ (D.α)(x).
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Calculus on G

(I) Say f ∈ L1
loc(G ), i.e. f is locally integrable on G . If

D ∈ C[C ] we write Df for the distribution

(Df )(ϕ) =

∫
G
f (x)(Dϕ)(x)dx , ϕ ∈ C∞c (G ).

(II) We say that f is C -finite if there is P ∈ C[X ] nonconstant
such that P(C )f = 0. If f is smooth, there is no need to
talk about distributions.
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Two deep results

(I) We will use the following two hard results, the first one being
an easy consequence of a hard analytic theorem called
elliptic regularity. The second one will be proved in much
greater generality later on.

Theorem Let f ∈ L1
loc(G ) a C -finite and right K -finite

function. Then:

• (elliptic regularity) f is real analytic in G .

• (Harish-Chandra’s harmonicity theorem) there is
α ∈ C∞c (G ) such that f = f ∗ α.

We can take α invariant by conjugation by K , with support
contained in a given neighborhood of 1 in G .



Automorphic forms on G

(I) The space A(Γ) of automorphic forms of level Γ (for G ) is
the space of functions f ∈ C∞(Γ\G ) which are right
K -finite, C -finite and of moderate growth. The MG
condition is automatic if Γ\G is compact, and in general it is
imposed to avoid explosion at ”cusps” of Γ\H (this notion
will be discussed a bit later on this lecture).

(II) As a special case of the hard theorems mentioned above:

Theorem Any f ∈ A(Γ) is real analytic and there is
α ∈ C∞c (G ) such that f = f ∗ α.
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Automorphic forms on G

(I) It is immediate that A(Γ) is stable under the right translation
action of K . It is not stable under G (the right K -finiteness
is lost), but the following consequence of the previous
theorem shows that it is stable under g (and forms a
(g,K )-module, animals that will be studied a lot in later
lectures):

Theorem
a) If f ∈ A(Γ), there is N such that for all D ∈ U(g) we have

sup
g∈G

|D.f (g)|
||g ||N

<∞.

b) If f ∈ A(Γ), then D.f ∈ A(Γ) for all D ∈ U(g).

(II) Part b) immediately follows from a): Df has moderate
growth by a) and the other properties are easy.
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Automorphic forms on G

(I) Write f = f ∗ α for some α ∈ C∞c (G ) (previous theorem!).
Pick c ,N such that |f (g)| ≤ c ||g ||N for all g . We have

||Df (g)|| = ||D(f ∗ α)(g)| = |f ∗ (D.α)(g)| ≤∫
G
c ||gx−1||N |(D.α)(x)|dx ≤ c ||g ||N

∫
G
||x−1||N |(D.α)(x)|dx ,

(II) Since D.α ∈ C∞c (G ), the last integral is finite and so we are
done.
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Examples of automorphic forms

(I) The easiest way to produce automorphic forms is via
Poincaré series. However, proving that the resulting
functions really are automorphic forms is not that easy (it
uses the harmonicity theorem):

Theorem Let ϕ ∈ L1(G ) be a (right) K -finite and C -finite
function and consider the map pϕ : G → C

pϕ(x) =
∑
γ∈Γ

ϕ(γx).

The series converges absolutely and locally uniformly and
pϕ ∈ A(Γ) ∩ L1(Γ\G ).



Examples of automorphic forms
(I) The proof is rather indirect (the one below is slightly

different than the one in the Bible). We start with the
following technical result:

Lemma Given α ∈ C∞c (G ) there are c ,N > 0 such that for
all ϕ ∈ L1(G ) and all x ∈ G we have∑

γ∈Γ

|(ϕ ∗ α)(γx)| ≤ c ||x ||N ||ϕ||L1(G).

(II) Let’s see why this implies the theorem. By the harmonicity
theorem there is α ∈ C∞c (G ) such that ϕ = ϕ ∗ α. For any
D ∈ U(g), applying the lemma to D.α ∈ C∞c (G ) and using
the relation Dϕ = ϕ ∗ (D.α), we obtain the absolute and
locally uniform convergence of

∑
γ(D.ϕ)(γx). Thus pϕ is

well-defined, smooth and (D.pϕ)(x) =
∑

γ(D.ϕ)(γx). Since
ϕ is C -finite, so is pϕ. Similarly for right K -finiteness.
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Examples of automorphic forms

(I) Left Γ-invariance is clear, and moderate growth follows from
the lemma. Finally pϕ ∈ L1(Γ\G ) since∫

Γ\G
|pϕ(x)|dx ≤

∫
Γ\G

∑
γ∈Γ

|ϕ(γx)|dx =

∫
G
|ϕ(x)|dx <∞.

(II) Let’s prove the lemma now. Let U a compact set containing
Supp(α), then

|(ϕ ∗ α)(γx)| ≤
∫
G
|ϕ(z)||α(z−1γx)|dz

≤ ||α||∞
∫
G

1z−1γx∈U |ϕ(z)|dz .
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Examples of automorphic forms
(I) If we can prove that for suitable c,N we have∑

γ∈Γ

1z−1γx∈U ≤ c ||x ||N

for all x , z , then we are done: by the previous inequalities∑
γ∈Γ

|ϕ(γx)| ≤ c ||x ||N
∫
G
|ϕ(z)|dz .

(II) If z−1γix ∈ U for 1 ≤ i ≤ d , then x−1γ−1
i γ1x ∈ U−1U for

1 ≤ i ≤ d . Since U is bounded and ||x−1|| = ||x ||, we obtain
||γ−1

i γ1|| ≤ c ||x ||2 for a constant c depending only on U.

(III) We finish the proof using the following nice

Lemma There are constants c ,N such that for all r > 0
there are at most crN elements γ ∈ Γ with ||γ|| ≤ r .
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Examples of automorphic forms

(I) This is very easy if Γ ⊂ SL2(Z), as then the entries of γ take
at most 2r + 1 ≤ 3r (if r ≥ 1, which we may assume)
different values (they are between −r and r and are
integers), so we can take c = 34 and N = 4 in this case.

(II) In general, since Γ is discrete, there is a relatively compact
open neighborhood U of 1 such that UU−1 ∩ Γ = {1}. Let
Br = {x ∈ G | ||x || ≤ r}. If γi ∈ Γ ∩ Br for 1 ≤ i ≤ d , then
γiU are pairwise disjoint and contained in Brc with
c = maxu∈Ū ||u||. Thus dvol(U) ≤ vol(Brc) and it suffices
to show that r → vol(Br ) grows at most polynomially. This
is not hard, cf Bible lemma 5.12.
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Cuspidality

(I) From now on we assume that Γ is a lattice in G . The
most well-behaved analytically (and the most mysterious...)
automorphic forms are the cuspidal ones. The notion of
cuspidality is related to the non compactness of Γ\G , or
equivalently of Γ\H and to the presence of nontrivial
unipotent matrices in Γ.

(II) The action of G on H extends to

H = H ∪ R ∪ {∞}

and preserves the boundary

∂H = R ∪ {∞}

of H , on which K/{±1} acts simply transitively.
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Cuspidality

(I) The stabiliser of a point of ∂H is called a parabolic
subgroup of G . The standard parabolic is the stabiliser of
∞, namely

B = ±NA = {
(
a b
0 a−1

)
| a ∈ R∗, b ∈ R}.

(II) For any parabolic P there is k ∈ K (unique up to ±1) with
kBk−1 = P. Let AP = kAk−1 (thus AB = A). The
unipotent radical NP = kNBk

−1 of P and AP are
independent of the choice of k, NP is normal in P and
NP × AP × K → G is a diffeomorphism.

(III) Let z ∈ ∂H and let P = Gz be its stabiliser and N = NP

the unipotent radical of P (i.e. the unipotent matrices in P).
We say that z is a Γ-cuspidal point (and that P is a
Γ-cuspidal parabolic) if Γ ∩ N 6= {1}.
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Cuspidality

(I) We let C (Γ) (resp. CP(Γ)) be the set of Γ-cuspidal points
(resp. parabolic subgroups). Γ acts naturally on C (Γ) and
CP(Γ). Thus a point z ∈ ∂H is in C (Γ) if and only if z is
fixed by some nontrivial unipotent element of Γ.

(II) If P ∈ CP(Γ), then Γ ∩ N is an infinite cyclic group and
Γ ∩ P ⊂ ±(Γ ∩ N).
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Cuspidality
(I) Indeed, by conjugating WLOG z =∞ so P = B. Then

Γ ∩ N is identified with a nontrivial discrete subgroup of R,

thus Γ ∩ N =

(
1 hZ
0 1

)
for some h > 0. If

γ =

(
a b
0 a−1

)
∈ Γ ∩ P, then conjugation by γ is a

permutation of Γ ∩ N and given by

γ

(
1 x
0 1

)
γ−1 =

(
1 a2x
0 1

)
, thus a2 = 1.

(II) In particular, if Γ′ ⊂ Γ has finite index, then CP(Γ) = CP(Γ′)
and C (Γ) = C (Γ′) (use that Γ ∩ N/Γ′ ∩ N injects into Γ/Γ′,
so it is finite). It is easy to see that

C (SL2(Z)) = Q ∪ {∞}
and thus the same holds for any finite index subgroup of
SL2(Z).
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Cuspidality

(I) Let
H ∗

Γ = H ∪ C (Γ).

There is a natural topology on this space, for which H is an
open subspace and a fundamental system of neighborhoods
of z ∈ C (Γ) consists of the closed discs contained in H and
tangent to ∂H at z (if z =∞ this is to be interpreted as
{∞} ∪ {z ∈H | Im(z) > t}, for some t > 0).

(II) See prop 3.10 in the Bible for the nontrivial proof of:

Theorem For any discrete subgroup Γ of G , the quotient
space

X (Γ) = Γ\H ∗
Γ

is locally compact, thus Hausdorff.
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Cuspidality

(I) The previous theorem is related to a very classical result of
Poincaré, saying that any discrete subgroup Γ acts properly
on H , i.e. for any compact subset C ⊂H the set
{γ ∈ Γ| γC ∩ C 6= ∅} is finite, thus by general nonsense the
topological space

Y (Γ) = Γ\H

is locally compact, in particular Hausdorff.

(II) When Γ is a lattice in G , the next deep theorem shows that
X (Γ) gives a compactification of Y (Γ), by adding finitely
many points to it, called the cusps of X (Γ) (they are in
bijection with Γ\C (Γ)).
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Cuspidality

(I) See the Bible 3.13, 3.14 for the rather delicate proof of the
next theorem. For Γ a finite index subgroup of SL2(Z) the
proof is much easier and left as an excellent exercise.

Theorem (Siegel) For any lattice Γ in G we have:
a) The sets Γ\C (Γ) and Γ\CP(Γ) are finite.
b) X (Γ) is compact.
c) Y (Γ) is compact if and only if Γ is co-compact in G , if
and only if C (Γ) = ∅.
d) Γ is finitely generated.



Cuspidal automorphic forms

(I) We want to introduce now two basic definitions: that of the
constant term of an automorphic form with respect to a
cuspidal parabolic subgroup, and that of cuspidal
automorphic forms.

(II) Let P ∈ CP(Γ) and N = NP its unipotent radical. For any
f ∈ L1

loc(Γ ∩ N\G ) we define its constant term along P as

fP(g) =

∫
Γ∩N\N

f (ng)dn,

where dn is normalised so that vol(Γ ∩ N\N) = 1. This is
well-defined for almost all g , and locally integrable, by
Fubini’s theorem.

(III) We say that f is cuspidal at P (or at the point of ∂H fixed
by P) if fP is the zero map.
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Cuspidal automorphic forms

(I) The space of cuspidal automorphic forms of level Γ is

Acusp(Γ) = {f ∈ A(Γ)| fP = 0, ∀P ∈ CP(Γ).}

To check that f ∈ A(Γ) is cuspidal, it suffices (exercise) to
check that fP = 0 for a set of representatives of Γ\CP(Γ),
which is finite by Siegel’s theorem.

(II) We can also define the cuspidal subspace of L2(Γ\G )

L2
cusp(Γ\G ) = {f ∈ L2(Γ\G )| fP(g) = 0 a.e.g , ∀P ∈ CP(Γ)}.
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Cuspidal automorphic forms

(I) The proof of the following result is fairly delicate, cf. Bible
th 8.9:

Theorem Let ϕ ∈ L1(G ) be a C -finite, left and right
K -finite function. Then the Poincaré series pϕ ∈ Acusp(Γ).



Classical modular forms
(I) We take a break from automorphic forms and introduce

classical modular forms. These will turn out to yield other
very interesting examples of automorphic forms.

(II) Let k be an integer. Define

µ(

(
a b
c d

)
, z) = cz + d ,

then µ(gh, z) = µ(g , hz)µ(h, z) for all g , h, z , thus setting

(f |kg)(z) = f (gz)µ(g , z)−k

defines a right action of G on the space O(H ) of
holomorphic functions on H .

(III) The space WMk(Γ) of weakly-modular forms of level Γ
and weight k consists of those f ∈ O(H ) that are
Γ-invariant under the above action, i.e.

f (γ.z) = µ(γ, z)k f (z), γ ∈ Γ, z ∈H .
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Classical modular forms
(I) For instance, if Γ = SL2(Z) we have f ∈WMk(Γ) if and only

if f (z + 1) = f (z) and f (−1/z) = zk f (z), since

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
generate SL2(Z).

(II) Take f a weakly modular form of weight k and level Γ and

suppose that ∞ ∈ C (Γ), thus Γ ∩
(

1 R
0 1

)
=

(
1 hZ
0 1

)
for

some h > 0. Then f (z + h) = f (z).

(III) Since

(
1 hZ
0 1

)
\H is biholomorphic to

D∗ = {z ∈ C| 0 < |z | < 1} via z → e2iπz/h, there are an ∈ C
and an absolutely and locally uniform convergent expansion

f (z) =
∑
n∈Z

anq
n
h , , qh = e2iπz/h,

called the q-expansion of f at infinity.
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Classical modular forms

(I) We say that f is holomorphic at ∞ (resp. vanishes at ∞)
if an = 0 for n < 0 (resp. for n ≤ 0).

(II) Now let c ∈ C (Γ) be arbitrary and let g ∈ G be such that
g .∞ = c . Now f |kg ∈WMk(g−1Γg) and ∞ ∈ C (g−1Γg),
so we can give a meaning to f being holomorphic (resp.
vanishing) at c, by asking that this should happen for f |kg
at ∞. This is well-defined, i.e. independent of the choice of
g such that g .∞ = c (excellent exercise in bookkeeping),
even though the q-expansion at ∞ of f |kg depends on g .
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Classical modular forms

(I) We define then the space Mk(Γ) of modular forms of level
Γ and weight k as the space of weakly modular forms of
level Γ and weight k, which are holomorphic at all cuspidal
points of Γ. Similarly define the space Sk(Γ) of cuspidal
modular forms of level Γ and weight k . We will see in the
next lecture that it naturally embeds in A(Γ).

(II) Let’s give some classical examples of modular forms. We will
take Γ = SL2(Z), for simplicity. If k ≥ 3 simple arguments
show that for any 1-periodic bounded ϕ ∈ O(H ) the
modified Poincaré series

Pk,ϕ(z) =
∑

γ∈Γ∞\Γ

ϕ(γz) ∈ Mk(Γ).
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(I) For ϕ = 1 we write Ek = Pk,ϕ the normalised Eisenstein
series of weight k

Ek(z) =
1

2

∑
c,d∈Z

(c,d)=1

1

(cz + d)k
=

1

2ζ(k)
Gk(z),

with Gk the classical Eisenstein series of weight k

Gk(z) =
∑

(c,d)∈Z2K{(0,0)}

1

(cz + d)k
.

(II) Euler’s identity, valid for k ≥ 2 with q = e2iπz∑
n∈Z

1

(n + z)k
=

(−2iπ)k

(k − 1)!

∑
d≥1

dk−1qd

is obtained by differentiating k − 1 times the classical Euler
identity

π cot(πz) =
1

z
+
∑
n≥1

(
1

z − n
+

1

z + n

)
.
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(I) This immediately yields the q-expansion of Gk at ∞:

Ek(z) = 1 +
(−2iπ)k

ζ(k)

1

(k − 1)!

∑
n≥1

σk−1(n)qn,

where σs(n) =
∑

d |n,d>0 d
s and ζ(s) =

∑
n≥1

1
ns .

(II) For instance

E4 = 1 + 240
∑
n≥1

σ3(n)qn, E6(z) = 1− 504
∑
n≥1

σ5(n)qn.

We will see later on that any modular form of any weight for
SL2(Z) is a polynomial in E4 and E6 (and these are
algebraically independent).



(I) This immediately yields the q-expansion of Gk at ∞:

Ek(z) = 1 +
(−2iπ)k

ζ(k)

1

(k − 1)!

∑
n≥1

σk−1(n)qn,

where σs(n) =
∑

d |n,d>0 d
s and ζ(s) =

∑
n≥1

1
ns .

(II) For instance

E4 = 1 + 240
∑
n≥1

σ3(n)qn, E6(z) = 1− 504
∑
n≥1

σ5(n)qn.

We will see later on that any modular form of any weight for
SL2(Z) is a polynomial in E4 and E6 (and these are
algebraically independent).



(I) The q-expansion of Ek has rational coefficients thanks to
Euler’s classical result

ζ(k)

(2iπ)k
∈ Q, k ∈ {2, 4, 6, ...},

deduced by rewriting his identity as

1− iπz − 2iπz

e2iπz − 1
= 1− π cot(πz) = 2z2

∑
n≥1

1

n2 − z2

= 2z2ζ(2) + 2z4ζ(4) + 2z6ζ(6) + ...

(II) The double series
∑

c,d
1

(cz+d)2 does not converges

absolutely, but (exclude (c , d) = (0, 0) in the sum below)

G2(z) :=
∑
c∈Z

(∑
d∈Z

1

(cz + d)2

)
converges and Euler’s identity still gives

G2(z) =
π2

3
(1− 24

∑
n≥1

σ1(n)qn).
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(I) However, G2 is NOT a modular form. A rather subtle
algebraic manipulation shows that

G2(−1/z) = z2G2(z)− 2iπz .

This implies that z → G2(z)− π
Im(z) is SL2(Z)-invariant for

the |2-action, BUT... it is not holomorphic!

(II) Still, the relation above has the following amazing
consequence:

Theorem (Jacobi) The following function ∆ gives an
element of S12(SL2(Z)), where q = e2iπz

∆(z) = q
∏
n≥1

(1− qn)24.
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(I) The only tricky part is showing that ∆(−1/z) = z12∆(z)
(and this is really damn tricky!). A simple calculation shows
that

∆′(z)

∆(z)
= 2iπ(1− 24

∑
n≥1

qn

1− qn
) = 2iπ(1− 24

∑
n≥1

σ1(n)qn),

thus up to a constant this is G2(z).

(II) The relation between G2(−1/z) and G2(z) immediately

yields f ′(z)/f (z) = 0, where f (z) = ∆(−1/z)
z12∆(z)

. Thus f is

constant and since f (i) = 1, we have f = 1 and we are done!
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